On-the-fly User Modeling for Cost-sensitive Correction of Speech Transcripts

Matthias Sperber¹, Graham Neubig², Satoshi Nakamura², Alex Waibel¹

¹ Karlsruhe Institute of Technology, Germany; ² Nara Institute of Science and Technology, Japan

- Choice of segments improves continually as cost model improves
- Recover from time-prediction errors \rightarrow e.g. remove segments when running out of time

On-the-fly Cost Modeling:

- Gaussian Process regression: supports a prior!
- Use crude prior: cost ≈ 2sec + 1sec per word.
- Unrealistic, but captures 2 key properties:
 - 1. Longer segments need more time.
 - 2. Cognitive overhead for switching segments.
- After each update, predictions get more accurate.

2. Fast segmentation algorithm

- Important: don't want the transcriber to wait while updating.
- Optimal choice of segments is NP-hard!
 (→ competing goals of min. cost vs. max. #corrections)
- Optimize combined objective: $\lambda \# corrections (1-\lambda) cost$ via dynamic programming.
- Binary search to find λ that comes closest to time budget.

Experiments

Setup

- Task: Correct automatic transcripts of 10 TED talks (104 minutes of audio).
- Available time budget: 100 minutes.
- Simulating a realistic transcriber:
 - Train a cost model on correction times observed from a real transcriber.
 - Apply noise to output times.
- Assume that transcriber behaves like this oracle cost-model (and perfectly corrects all errors).

Simulation Results

Wrap-Up

- Updating approach improves correction efficiency by 28% over prior cost-sensitive approach.
- Get rid of time-consuming transcriber enrollment.
- Fast updates remove transcriber waiting time.

