

Efficient Speech Transcription Through Respeaking

Matthias Sperber^{1,3}, Graham Neubig², Christian Fügen³, Satoshi Nakamura², Alex Waibel¹

¹ Karlsruhe Institute of Technology, Germany; ² Nara Institute of Science and Technology, Japan; ³ Mobile Technologies GmbH, Germany

Introduction

- A respeaking method that can make post-correction...
 - more efficient than with typing, and...
 - less demanding than with traditional respeaking methods.

Approach

Initial step: speaker enrollment

→ Acoustic model adaptation using maximum likelihood linear regression

Step 1: Create automatic transcript

→ Should be as accurate as possible to reduce supervision effort, and make confidence filtering effective

Step 2: Segment into sentence-like units

Desirable properties:

- Sentence-like units (natural to respeak)
- Not too short (→ language model context needed for respeaking recognition)
- Not too long (→ allow fine-grained confidence filtering; obtain more perfect segments so we can skip respeaking)
 Approach: use [Matusov+06]'s segmentation method (log-linear feature combination including prosodic-, language-model-, and other features)

Step 3: Confidence annotation & filtering

- Segment confidence
 = mean word posterior
- Only supervise segments with confidence below threshold

Step 4: Respeaking of selected segments

Important: skip respeaking when segment already correct initially (respeaking can only make it worse!)

Step 5: Combine respoken and initial transcripts

- Different recognition errors for original speech and respeaking
- Align both using phone similarity, choose most confident word at each position

Experiments & Results

- Respeaking task on TED talks
- 1 native speaker, 1 foreign speaker
- Both: inexperienced respeakers, fast typists
- Typed and respoke confidence-ordered segments

Input speed (wpm)		Recognition Accuracy (WER)				
Typing	58~61		Original	Respoken	Combined	Typed
Respeaking	83~97	Correct all	21.7	14.9	13.1	5.7
		Skip correct		12.3	11.9	5.7

Respeaking

Faster (WER 21.7 → 11.9,
 ~2x real-time)

Typing

More accurate (WER 21.7 → 5.7,
 ~3.5x real-time

Typing faster if segment WER < 5% (respeaking is for whole segment, whereas only parts that contain errors need to be re-typed)

Use of segmentation

- + Makes respeaking much easier (cheaper!) than respeaking everything without break
- Causes 1.8% additional errors (due to inaccurately aligned segment breaks)
- Avg. segment length: 8.6 words (which is a reasonable trade-off: simulating double segment length decreased overall efficiency)

Confidence filtering

- + Greatly helps efficiency
- Can be confusing to annotator ("jump" through the speech) → unsupervised part of transcript should be displayed as text to convey context
- Simulating better (but still realistic) WER/speed greatly boosts efficiency
- Hypothesis combination effective
- Bottom line: provided reasonable respeaking WER, respeaking is more efficient (except near-perfect segments that should be typed)